Phytochemistry, 1973, Vol. 12, pp. 1493 to 1494. Pergamon Press. Printed in England.

ISOLATION OF FLAVASPIDIC ACID-PB FROM DRYOPTERIS SIEBOLDII

SANSEI HISADA, O. INOUE and I. INAGAKI

Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho, Nagoya, Japan

(Received 5 December 1972. Accepted 10 January 1973)

Key Word Index—*Dryopteris sieboldii*; Aspidiaceae; ferns; acylphloroglucinols; flavaspidic acid-*AB* and -*PB*; filixic acid -*PBP*.

Plant. Dryopteris sieboldii (van Houtte) O. Ktze. Source. Kagoshima Prefecture, Japan. Previous work. The presence of flavaspidic acid and filixic acid was detected by paper electrophoresis,¹ and the existence of flavaspidic acid-PB was only reported in D. filix-mas by PPC.²

Present work. Dried rhizomes of D. sieboldii were percolated with Et₂O and crude filicin was obtained by MgO method.³ The Et₂O solution of crude filicin gave flavaspidic acid-AB (I). Mother liquor after removal of I was chromatographed on silica and eluted with cyclohexane-CHCl₃ (1:1). The elution afforded filixic acid-PBP (II) and then flavaspidic acid-PB (III).

Flavaspidic acid-AB (I). $C_{22}H_{26}O_8$, m.p. $205-7^\circ$ (from C_6H_6) IR, UV, NMR and m.m.p. with authentic sample. Filixic acid-PBP (II). $C_{30}H_{40}O_{12}$, m.p. $192-194^\circ$ (light yellow needles from acetone). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3140 (OH), 2940 (methylene), 1640–1610 (enolic 1,3-diketo system or 2-hydroxyarylketone), 1192. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ϵ) 225 (4·42), 297 (4·24), 345 (4·12). UV $\lambda_{\text{max}}^{\text{EtOH+NaOH}}$ nm (log ϵ) 242 (4·37), 315 (4·26). R_f 0·75 on TLC in CHCl₃–MeOH–H₂O (7:3:1, lower) spot color gave orange yellow with diazotized benzidine and dark brown with FeCl₃. The NMR spectrum (NMR analysis in CDCl₃ using TMS as internal reference showed ppm) shows signal attributable to: 0·96 (3H, t-COCH₂CH₂CH₃), 1·40, 1·46 (12H, each s gem-dimethyl), about 1·76 (2H, m-COCH₂CH₂CH₃), 3·15 (6H, t-COCH₂CH₂CH₃, -COCH₂CH₃), 3·52 (4H, s two methylene bridges), 9·97 (2H, s), 11·39 (1H, s), 12·62 (1H, s), 15·57 (1H, s), 17·78 (2H, s), all due to hydrogen bonded hydroxy groups and quenched by addition of D₂O. The MS, 640 (M⁺), significant peaks at m/e 418, 222, 210, 193, 181, 165, 153.

¹ HISADA, S. and NORO, Y. (1961) Yakugaku Zasshi 81, 1270.

² PENTILLÄ, A. and SUNDMAN, J. (1964) Acta Chem. Scand. 18, 344.

³ AEBI, A., BÜCHI, J. and KAPOOR, A. (1957) Helv. Chim. Acta 40, 266.

Acknowledgements—The authors thank Professor H. Itokawa, Tokyo College of Pharmacy for measurement of NMR and MS. We are also indebted to Analytical Center of our University for NMR spectra and elemental analysis.

Phytochemistry, 1973, Vol. 12, pp. 1494 to 1495. Pergamon Press Printed in England.

BIFLAVONES IN THE LEAVES OF TWO JUNIPERUS PLANTS

NAJMA HAMEED, MOHD. ILYAS, WASIUR RAHMAN, MASAYOSHI OKIGAWA and NOBUSUKE KAWANO

Department of Chemistry, Aligarh Muslim University, Aligarh, India and Faculty of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan

(Received 21 December 1972, Accepted 23 January 1973)

Key Word Index—*Juniperus horizontalis*; *Juniperus recurva*; Cupressaceae: biflavones; sciadopitysin; 7,7"-di-*O*-methylcupressuflavone

A number of *Juniperus* plants has already been examined¹⁻³ for biflavones. We now report the isolation of sciadopitysin⁴ (I, 7,4',4'''-tri-O-methylamentoflavone) from *Juniperus horizontalis* Moench⁵ and 7,7''-di-O-methylcupressuflavone^{6,7} (II) from *J. recurva* Buch.-Ham.⁵ Some other biflavones including cupressuflavone and its monomethyl ether are detected in the leaf extracts of the two plants by TLC examinations. This constitutes the

¹ SAWADA, T., (1958) J. Pharm. Soc. (Japan) 78, 1023; KARIYONE, T. (1962) J. Pharmacog. Soc. (Japan) 16, 1.

² MASHIMA, T., OKIGAWA, M. and KAWANO, N. (1970) J. Pharm. Soc. (Japan) 90, 512.

³ Pelter, A., Warren, R., Hameed, N., Ilyas, M. and Rahman, W. (1971) J. Indian Chem. Soc. 48, 204.

⁴ KAWANO, N (1959) Chem. Pharm. Bull. (Tokyo) 7, 698, 821.

⁵ Place of collection and identification: Lyod Botanical Garden, Darjeeling, India.

⁶ MASHIMA, T, OKIGAWA, M., KAWANO, N., KHAN, N. U., ILYAS, M and RAHMAN, W. (1970) Tetrahedron Letters 2937.

⁷ KHAN, N. U., ILYAS, M., RAHMAN, W., MASHIMA, T., OKIGAWA, M. and KAWANO, N. (1973) *Tetrahedron* **29**, in press.